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3 x 2 Channel Waveguide Gyroscope Couplers: Theory

WILLIAM K. BURNS, MEMBER, IEEE, AND A. FENNER MILTON

Abstract—-Gyroscope couplers with three input ports and two output
ports which can be implemented in a planar geometry are studied theo-
retically. Using a local normal mode description in the approximation
of coupled mode theory, analytic output power expressions are ob-
tained for the 3 X 2 branching waveguide coupler and the 3 X 2 direc-
tional waveguide coupler. When optimized, these devices behave identi-
cally to each other and to the three-dimensional 3 X 3 coupler [1] from
which they are derived.

I. INTRODUCTION

HE use of a 3 X 3 coupler in a fiber optical gyroscope, as

demonstrated by Sheem [1], provides a passive approach
to the operation of a fiber gyroscope at maximum sensitivity
for low rotation rates. The appeal of this device has led to the
investigation of approaches by which it could be implemented
in a planar geometry [2] so that precision circuits could be
fabricated with the techniques of integrated optics. Two such
planar implementations have been suggested: a 3 X 2 branch-
ing waveguide coupler [Fig. 1(a)], presented here,and a3 X 2
directional coupler approach [Fig. 1(b)], also suggested by
Sheem [3]. Both these devices recognize the requirement of
symmetry about a center line in the direction of propagation
and the requirement of an input guide separate from the two
output guides. They differ from the 3 X 3 coupler, whether
three dimensional [1}] or planar [2], [3], in that they utilize
only two output guides to the fiber loop. The third guide is
terminated in the body of the coupler. They differ in pre-
cisely how this is accomplished in that the branching coupler
only has one interference region while the directional coupler
uses two. Both devices utilize a single-mode (3 single-mode
arms) three-arm branching or separating waveguide which, to
date, has not been theoretically analyzed. A multimode three-
arm branch has been reported in [4].

Our purpose in this paper is to provide an approach to the
understanding of the three-arm branch and to apply that under-
standing to the analysis of the 3 X 2 branching coupler and the
3 X 2 directional coupler. Our branch analysis makes use of
the coupler symmetry, mentioned above, to reduce the three-
arm branch to an equivalent two-arm branch, which is well
understood and can be quantitatively described in the abrupt,
power-dividing limit [5], [6]. Our analytical approach is to
utilize the approximation of coupled mode theory to develop
the local normal modes for a set of three coupled waveguides.
With the local normal mode description, we can describe both
power transfer between local normal modes in the branches
and interference between local normal modes in the interfer-
ence sections. This allows us to write analytic output power
expressions for each 3 X 2 coupler. We find, in fact, that when
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Fig. 1. (a) is a (3 X 2) branching waveguide coupler and (b) isa (3 X 2)
directional waveguide coupler [3]. Each device is symmetrical about
its center line.

optimized, the two couplers operate identically. We note that
Sheem has described the 3 X 2 directional coupler by consider-
ing the modes of each individual guiding region and also using
coupled mode theory [3]. Although our local normal mode
approach gives a theoretically equivalent result, we feel it adds
a useful physical picture of the operation of the device. Our
analysis of the three-arm branching waveguide will have general
utility to the understanding and design of these structures.
The application of this result to the 3 X 2 gyroscope couplers
provides simple analytic expressions describing output power
in terms of fundamental design parameters and will aid in the
future design of this class of 3 X 2 couplers.

II. OPERATION OF THE THREE-ARM BRANCH

In order to treat a three-arm branch we will first develop
representations for the local normal modes of the three cou-
pled waveguides of Fig. 2. We assume the outer guides to be
identical and equidistant from the center guide. K;,(=K,3) is
the nearest neighbor coupling coefficient and K, is the cou-
pling coefficient between the two outer guides. Coupled mode
equations describing this system are [7]

da1 . . .

E‘*‘lﬁl‘h +i|Kzlay +ilKyzlaz =0 (1a)
da, _, , . .

d—ZZ"‘leaz +i|Kyzlay +i|Kpia; =0 (1b)
day . R

—+ifiza; +i|Kj3lay +ilKypla, =0 (1c)

dz

where a; is the coupled mode amplitude (not local normal
mode) and f; is the mode propagation constant for guide 1,
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Fig. 2. Three coupled channel waveguides. Guides 1 and 3 are identical
and equidistant from guide 2.

etc. When $3 =§,, the propagation equations for this three-
guide system can be reduced to the equations of the usual two-
guide system by the substitution [7]

a(z) = a,(z) (22)
1
b(z) = NG [a1(2) +a3(2)] (2b)
to obtain
L vigaa+iKIb=0 Ga)
%+i{3bb+i|K|a=0 (3b)
where
Bz =82 (4a)
Br =81+ |K13l (4b)
IK| =2 Kl (4c)

One local normal mode of our three coupled waveguides is
obtained from the particular solution [7] a(z)=b(z)=0.
Substitution into (1) yields the antisymmetric local normal
mode, which we denote by the subscript j.

12

4@)=| 0 |exp ¥* (52)
S1V2
where
B; =81 - 1Kusl. (5b)
The column vector in (5a) represents
,(0)
a,(0)
a3(0)

and has been normalized to unity power.
tem are obtained from the standard normal mode transforma-

tion [8], [9] of (3). The result for the local normal mode
amplitudes @; and a;, is

d\  _ig:z
a,-(z)=( )exp i
e

—e _ip
ak(z)=< d)exp Pr?

where the column vector represents

(o)

(62)

(6b)
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The normal mode propagation constants are
B;=B+IK|(X* + 1)/ (72)
B =B - K| (X* + 1)1/ (7b)
where
B=1(8.+8y (82)
__48
= 3K (8b)
AB =8, - By (8¢)
and
1 ) X
/3] .
1 X
e= ‘/——2—- [l—m] (9b)

so thatd? +e? = 1.

By transforming the column vectors in (6) from the reduced
two-guide system to the original three-guide system, we obtain
the symmetric local normal modes of the three-guide system.
We employ (2) at z =0 and maintain the constraint of unity
power to obtain from (6) !

elN2

~if;z

A;)={ d exp (10a)
e/VZ
diNZ _

A @)= -e |exp (10b)

N2

These local normal modes have the property «,(0) = 23(0) as
we would expect from the symmetry of the system.

Power distribution between the center and outer guides in
the local normal modes i and k depends on the parameter X
[6], [9] which from (4) and (8) can be written as ‘

_ BB~ Ky
2v2 Ky,

where A =g, - B; is the difference in propagation constants
for the three coupled guides. For example if X =0, then d =
e=1/4/2. At large guide separation, X - 0 if A =0. How-
ever, if AB>0 then X >0, and d = 1, e =0. These local nor-

(1)

. . mal mode distributions are shown in Fig. 3. This behavior is
The two local normal modes for the reduced two-guide sys-

the analog of the behavior of the two-arm branch for synchro-
nous (Af = 0) or nonsynchronous (A # 0) operation [5], [6].
The difference here is that at small guide separation, Af be-
comes a function of guide separation through the coupling
coefficient K 3.

The utility of the reduced two-guide solution is that we can
apply many of the results of the two-arm branch to the three-
arm branch. Inparticular, power transfer between local normal
modes at an abrupt transition (case of power division) can be
expressed as [9]

|4z I?

|Ai1|2 _ (fo _f1)2
;o " g

- AP ALY

(12)
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Fig. 3. Shape of the symmetric local normal modes i and k for large
guide separation such that the waveguides are uncoupled. (a) Three
identical waveguides. (b) Outer waveguides different from center
waveguide.

w
)

for mode i or k, respectively, incident on the transition, where

f===-X+(X?+DY? (13)

KN

and o, 1 refer to opposite sides of the transition. We also note
that because of the symmetry of our structure, overlap inte-
grals between the antisymmetric mode j and the symmetric
modes i and k are always zero. Thus, there is never any power
transfer at a transition between j and i or k.

For AB>0 we typically have a transition between X, at
small or zero guide separation and X = oo at large guide separa-
tion. For input in #, (12) for this case reduces to {6]

Al L[ X ]
il 2 L (X + D7

which is identical to e evaluated at X, (9b).

As has been discussed in [6], (12) and (14) are derived using
coupled mode theory and are accurate in the regime where
coupled mode theory is a good approximation. This circum-
stance occurs when branch arms are well separated (weak
coupling) or, in (14), when the reduced two-arm branch is
synchronous (small X,,).

(14)

III. OPERATION OF THE GYROSCOPE COUPLERS

We will use the local normal mode formalism developed in
Section II for three coupled waveguides to analyze the two
types of 3 X 2 gyroscope couplers shown in Fig. 1. For each
coupler we envision source input to the center guide on the
left of the coupler, the gyroscope fiber loop attached to the
two guides on the right, and output signals from the outer
guides on the left. Examination of gyroscope output equations
[10] indicates that the device will be at the maximum sensi-
tivity or quadrature point when the output signals from the
two outer arms are equal for zero rotation. From the normal
mode considerations of Section II we can see that, for these
couplers, this condition is guaranteed by the requirement for
symmetry about the coupler center line. We have a symmetri-
cal excitation or input which will only excite the symmetrical
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local normal modes i and k. Because of the coupler symmetry,
these modes always have equal amplitude in the outside guides.
In the absence of rotation there is no coupling to the antisym-
metric mode /. Therefore, the output signals must be identical
at rest, independent of the mode coupling in the branches and
of the lengths of the interference sections. The magnitude of
the gyroscope sensitivity at the maximum point, however, will
depend on the design of the branches and interference sec-
tions, as will be demonstrated below.

We will consider the branching [Fig. 1(a)] or separating (b)
waveguide behavior in the abrupt or power dividing limit
because it will allow us to superpose modes in a branch while
maintaining their relative phase (thereby avoiding a compli-
cated calculation) and because it will allow us to use the ana-
lytic expression for power transfer in (14). We are interested
in a system of three coupled guides that are not too different
in thickness or refractive index profile, so we have a choice of
assuming guides with identical propagation constants (Ag = 0)
or assuming a slight difference in propagation constant be-
tween the center and the outer guides (Af # 0). We choose
the latter case (AP # 0) since it represents greater generality,
and in fact, turns out to be necessary to optimize the gyro-
scopic sensitivity of the branching couplers. This represents a
significant difference between our analysis and that given in
[3] for the 3 X 2 directional coupler.

A. 3 X 2 Branching Coupler

In Fig. 4 we assume D, =D; =~ D, and D, =D, where D;
is the width of channel i. Each channel is single mode so that
the central channel of width 2D, supports two normal modes,
and the channel at position B of width 2D; + D, supports
three normal modes. Between B and C the channel width nar-
rows from a three-mode guide to a two-mode guide.

For AB >0 the local normal modes at large separation (posi-
tion 4) are shown in Fig. 3(b). Input of unity power into
guide 2 will excite only local normal mode 7, which will travel
in the branch and, from (14), convert e? of power to mode k
by the time it reaches position B [Fig. 4(a)]. The total mode
amplitude at B, ¥(B) is given by the following:

\I/(B) =1 - 62 \I,i - 6\I/k (15)

where ¢ is evaluated at B and ¥; and ¥, represent the trans-
verse field distribution of the symmetric local normal mode
amplitudes at B (normalized). In (15) we have inserted the
proper phase (m) between W; and ¥, which is apparent from
the assumption of power division and the definitions of (10).
We assume adiabatic (no power transfer between local normal
modes) guide narrowing between B and C so that mode & cuts
off with power loss €? and mode i evolves without power loss
to the mode i of the two-mode guide at C. Mode i then prop-
agates to position D where we assume a symmetric (84 = fs),
power dividing two-arm branch leading to each end of the gyro
fiber loop. After branch arm separation, mode (not local
normal mode) amplitudes in each guiding region are a5 =as =
V(1 - €%)/2. With a total Sagnac phase shift of 2¢ imposed by
the rotating loop, the returns at position £ are [Fig. 4(b)]

() v ()
as 2 exp ¢

(16)
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Fig. 4. (a) Input and (b) output mode distributions for the (3 X 2)
branching waveguide coupler.

which enter the branch to form a mixture of the symmetric
(i2) and antisymmetric (j2) modes, 7/2 degrees out of phase,
of the two-mode structure at D.

V(D) =V1-€* (cos p¥;, +isin ¢¥;,). an

Here, ¥;, and ¥;, represent the transverse field dependence
(normalized) of the local normal modes of the two-mode guide.
These modes interfere as they propagate to position C

W(C)=V1- € (cos ¢y, exp P2% +isin P;, exp Piaky
(18)

where §;, and §;, are the propagation constants of the local
normal modes between C and D, and L is the length of the
interference section between C and D. As these modes propa-
gate out the branch to position 4, mode i will again transfer

e? of power to k, while mode j remains uncoupled.  The out-
put local normal modes at 4 are
0
U, =v1-ecosg| 1 |exp P2t (19a)
0
1V2
Y; = Vi-eXsing|{ 0 exp_i(ﬁsz_nlz) -~ (19b)
-1V/2
1/v/2
T, =evi-e*cosp| O exp_iBhL (19¢)

12

where e is to be evaluated at B. The output power in each
guide is obtained by superposition of the local normal modes

of (19).
Py=1(1-¢*)[1-(1-¢*)cos® g *ecosasin2g] (20a)
3 ,

P, =(1-¢%)?cos? ¢ (20b)
where in (20a) the plus sign is taken for P, and the minus for
P;, and a=(B;, - B;;)L - n/2. We define the sensitivity S,
assuming unity input power, as
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dP 1
S ! =—(1-¢e*)ecosa

=m oo 2 (21)

and obtain the maximum sensitivity for the parameter values
€?(B)=1 and «=0. The 3 X 2 branching coupler is conve-
nient to analyze in that, with the assumption of an abrupt
three-arm branch, all the phase shift between the local normal
modes occurs in the interference section of length L. From
(21) we see that sensitivity is maximized by a #/2 phase shift
in this section, equivalent to the 3 dB coupling required in a
2 X 2 gyroscope coupler. Optimization of the branch design is
achieved by maximizing the interference term between local
normal modes j and k, W;¥F + WF¥, in the output guide
1 or 3. Mode 7 plays no role since it has no amplitude in an
output guide. The value of X at B required to accomplish this,
e*(B) = %, is obtained from (14) as

_0B- KB _ 1
X(B)_zx/i K2B)l 242

which in turn requires AB = [K1,(B)| + |K13(B)|. Power loss
upon input in the coupler is then %, independent of ¢. With
this optimization the output powers become

Py =% (2-cos 2¢ £ /3 sin 29)
3

(22)

(23a)

Py =% (1+cos 2¢). (23b)

This result is identical with the corresponding equations (after
an equivalent maximization) for the (3 X 3) gyroscope coupler
[1], [11]. The maximized coupler sensitivity in both cases is
S =(3+/3)7!. Equation (23) is plotted in Fig. 5.

Since detailed knowledge of channel dispersion and coupling
coefficients is hard to obtain, it is of interest to estimate the
coupler sensitivity for the simplest experimental case of equal
branch arm widths AB=>~0. We can treat this case with the
model developed above by assuming A positive, but small
compared to |K3(B)|. Then at large arm separation X — oo
and at B we have

- K@)l
) S K@)

The coupling coefficients between arms of the branch can be
written as [6]

24)

“Y12X

IK12| = Fyy exp (252)

(25b)

where x is a variable separation between arms of the branch,
D, is the thickness of the center guide, 4, and y,3 are trans-
verse momentum components in the cladding region between
the channel waveguides, and Fy, and F;3 are constants. For
our case of very small A we have Fy, 2 Fy3 and 71, = 713 = 7,
and as x > 0, (24) for X(B) becomes

- 2x+D.
IK1s|=Fis exp T13Gx+D2)

(26)

For modes near cutoff, we expect the field extent to be large
and v~ 0 so that X(B) = -1/2+/2. For modes far from cut-
off, the fields will be well confined so that yD, is large and
X(B) ~ 0. We thus expect values of X(B) limited by -1/24/2 <
X(B) <0, depending on waveguide dispersion, for the case of
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Fig. 5. Channel waveguide output power versus Sagnac phase shift as
described by (23). Both the couplers described in this paper are de-
scribed by this relationship when optimized.

small AB. Corresponding values of * and S are 2 <e? <1 and
0.136 € § <0.177, compared to the optimum sensitivity of
§=0.192. Designing the branch with equal arms is then likely
to reduce sensitivity between 10 and 30 percent from the
optimum value.

B. 3 X 2 Directional Coupler

The 3 X 2 directional coupler of Fig. 6 was suggested by
Sheem, who has analyzed it using conventional coupled mode
theory which does not use local normal modes [3]. The cou-
pler employs a three-arm separating waveguide and a three-
guide interference section (L) in place of the branch of the
3 X 2 branching coupler. The two-mode mixing section (L,)
is a directional coupler with nonzero gap. In effect, this de-
vice is the directional coupler analog of the 3 X 2 branching
coupler. We will analyze the directional coupler under the
same assumptions used previously,i.e., A3 > 0and a symmetri-
cal (power dividing) two-arm branch before the fiber loop.

As before, we input unity power in guide 2 (normal mode 1)
from the left. In this separating waveguide where the local
normal modes are well described by the coupled mode theory
developed in Section II on both sides of the branch, power
division simply implies that the power distribution at 4 is re-
produced at B. This statement is identical to the assumption
of (14), i.e., power transfer of e* from i to k in the branch.
This equivalence is seen by inspecting the analog of (15) for
this case

e/lV2 /2
d lexp ®"-e| -e

e/l\2 djN2

since d=(1-e?)"/2 and we take z=0 at B. e and d in (27)
are evaluated at B. These modes (i and k) interfere between
B and C and at C the power in guide 2 is lost. The power in
each guide at C'is

P;(C)= (1- 6’2)62 [1-cos(Bi3 - Brs)L1]

-ifgz

¥(B)=d exp 27

(28a)

Py(C)=(1-€*)* +e* +2(1 - e*)e? cos (B3 ~ Bz )i
(28b)
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A
Fig, 6. Detail of the (3 X 2) directional coupler.

We assume the transition between C and D to act as an abrupt
(power dividing) transition so that the power in guides 1 and 3
at C is transferred without change to D. This excites normal
mode 7 in the two-guide section between D and E. At D we
have

1
wor=ric ()

where P;(C) is defined in (28a) and the column vector stands
for (Z;) The device now behaves identically to the branching
coupler discussed in the previous section in that ¥; travels to
E and divides in the separating branch between £ and F.

After traversing the fiber loop the returning Sagnac phase
shifted inputs combine in the branch as before to form the
normal modes 7 and j at E, /2 out of phase. These modes
propagate to D yielding

¥(D) = VP,(0) [cos é (i) exp Pit2

1 —iBs
+isin¢ ( 1) exp lﬁ”Lz]

where B;, and §;, denote the normal mode propagation con-
stants in the two-mode section and L, is the interference length
between D and £. In the abrupt transition between C and D,
mode i converts sufficient power to mode k such that at C
there is no power in guide 2. We have, then, at C

Ysymm(C) = V2P1(C) cos ¢ exp” P 1272
e/\2

(29)

(30)

EING)

el d Jexp R ral| -e exp Pk
eV2 dNz
(31a)
1
(€)= ivP(C) sing | 0 |exp 22 exp is?
-1
(31b)

where Wy, is the sum of ¢ and k, and we assume z = 0 at C,
These modes then propagate to B where z =L, and then out
the branch to 4 where power division insures that the power
distribution at A4 is identical to that at B. The output power in
each guide at 4 is
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P, =P(C)[1 - 2P(C) cos? ¢ £ sin 2¢
3

- {(1 - €) cos [(By, - Bya)L1 *
+é? cos [(Bj3 - Biz)Ly + al} (322)
P, =4P*(C) cos® ¢ (32b)
where P1(C) is given by (28a), @ = (8;, - Bip)L2 - /2, and e is
evaluated at B or C.
Again we wish to maximize the sensitivity S =dP/d2¢|s-¢

which is the coefficient of sin 2¢ in (32a). Using (4), (5), (7)-
(9) we can write the sensitivity, without approximation, as

1 Xx? .
S=5 (1 N l) sin? [VZ K5 |(X* + D2 L]

-{cos (8L, + @) cos [V2 K |(X? + DY2 L]

X
B (X2 + 1)1/2 sin (SLI +a) sin [\/—2—[1(12!()(2 + 1)1/2 Ll]}

(33)

where 8§ =-1/2(AB+3|K,3]) and X is evaluated at. B. This
coupler is more complicated than the branching coupler con-
sidered previously because the local normal modes experience
a relative phase shift in the section L, as well asin L,. Thus,
we might expect the optimum phase shift in the two-mode
section L, would not be #/2 in this case. An inspection of
(30) indicates that we can, however, obtain the same sensi-
tivity and output equations for the 3 X 2 directional coupler
as we obtained for the branching coupler by choosing param-
eter values as follows. 1) We choose A = |K3(B)| so that
X(B)=0 and § =-2|K3(B)|. 2) Then choose L, such that
sin? (v/2|Kp1L1) cos (V21K 12lLy) is maximized (|K,|L, =
38.7°). 3) Finally, choose L, such that 8L, +a=-2|K;3(B)| -
Ly +(Bj; - Biy)L2 - m/2 = 0. Then we again have § = (3+/3)!
and (29) reduces identically to (23) as obtained for the opti-
mized 3 X 2 branching coupler. The optimized parameter
values are, however, different for the two cases in that the
asymmetry A required is smaller for the directional coupler
and the length L, becomes a function of L. Indeed, an ex-
perimental choice of equal branch arm widths (Ag =2 0) will
result in an even smaller reduction in sensitivity than was the
case for the branching coupler. For example, for AB =0, a
choice of L, in(33) such that |K 1, |(X? + 1)Y/2 L, =38.7° and
L, such that 8L, + a=-3|Ky;3|Ly +(Bj, - Bip)L2 - 7/2=0
leads to

§= (34)

1 1
1 —
343 [ (1+8 exp27(x+D2))]

which, following the argument of Section III-A will be within
10 percent of the optimum sensitivity.

IV. CONCLUSIONS

We see that, when optimized, both waveguide couplers be-
have identically to the original three-dimensional 3 X 3 coupler
described in [1]. This optimum behavior is characterized by
the output (23) and by a sensitivity of (34/3)™!. An examina-
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tion of the optimized coupler shows that to obtain the maxi-
mum gyroscope sensitivity all these six port couplers (the radi-
ation mode serves as a virtual sixth port in the planar devices)
must be adjusted to obtain the same propagation result: 1) the
signals from the two output arms are equal for zero Sagnac
phase shift, 2) a one-third power loss occurs between input
port (2) and the two fiber ports, and 3) for input from a single
fiber port, an equal division of power occurs between the {wo
output ports (1) and (3). The first condition is satisfied by
symmetry around the center line. In the case of the 3 X 2
branching structure the power loss is adjusted by varying the
thickness of guide 2 relative to that of guide 1 and 3, thereby
changing B8, - 8;. The third requirement can then be met
by varying L. In the case of the 3 X 2 directional coupler
the power loss can be optimized by varying L; (in this case
all input guides can be nearly identical) and then the third
requirement met by varying L,. In practice, the planar struc-
tures may not behave exactly as analyzed here, but near op--
timum performance should be obtained as long as two inde-
pendent adjustments are possible to meet the requirements
described above.

To make these adjustments correctly in a completely passive
system would require detailed knowledge of mode dispersion
and coupling coefficients in the material system chosen. In an
active waveguide system such as Ti:LiNbOj, electrooptic con-
trol could be used to adjust the coupling lengths and even vary
the asynchronism (8, - 8;)in the branch, although this is more
difficult. Thus, a 3 X 2 directional coupler, with two indepen-
dent electrooptical adjustments, may be easier to fabricate.
However, a 3 X 2 branching coupler with a single electrooptical
adjustment of the interference length, and equal thickness
branch arms, will still operate within 30 percent of the opti-
mum sensitivity.

In the process of treating the 3 X 2 gyroscope couplers, we
have developed a local normal mode description for three cou-
pled waveguides which are symmetrical about their center line,
and shown, in the coupled mode approximation, how the
propagation equations can be reduced to those for two guides.
This result can be applied to three-arm branching or separating
waveguides with symmetry about a center line, allowing the
description of power transfer at a transition.
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Mode Size and Method for Estimating the Propagation
Constant of Single-Mode Ti:LiNbO3 Strip Waveguides

STEVEN K. KOROTKY, WILLIAM J. MINFORD, LAWRENCE L. BUHL, MANUEL D. DIVINOG,
AND ROD C. ALFERNESS

Abstract—We have formulated a model to calculate the mode size and
propagation constant of single-mode titanium-lithium niobate diffused
strip waveguides directly from controllable fabrication parameters and
basic constants. The model is compared to measurements of the lateral
and vertical mode width of Ti:LiNbO3 waveguides for a variety of dif-
fusion conditions. We show that the model accurately predicts the
geometrical mean mode size of the two-dimensional waveguide. The
model provides a simplified method for estimating the mode size and
propagation constant of the guide, and is useful in designing waveguide
devices having low fiber/waveguide coupling and bending losses.

I. INTRODUCTION

PTICAL waveguides produced by the in-diffusion of
Otitanium into lithium niobate crystals have been used to
fabricate many electrooptic and acoustooptic devices which
are potentially useful for communication and sensing applica-
tion [1]. The successful construction of some of these de-
vices, directional coupler wavelengths filters [2], for example,
depends critically on engineering the propagation constants of
the waveguides. For other applications, such as coupling to a
fiber [3], it is also necessary to control the size of the wave-
guide mode. For the most part, research devices based on
Ti:LiNbO; waveguides are developed through trial and error
iteration. As devices continue to become increasingly more
complex, the need for simple physical models for estimating
and relating the mode parameters of Ti:LiNbOj single-mode
strip waveguides becomes more acute.

In this paper, we present measured mode sizes for Ti:LiNbO;
waveguides as a function of several diffusion parameters. We
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also describe a model, based on the variational principle for
the propagation constant, which predicts the characteristics of
single-mode diffused strip waveguides in terms of controllable
diffusion parameters. The model accurately reproduces the
experimental geometrical mean mode size from fundamental
parameters, and also provides a simplified method for estimat-
ing the propagation constant of diffused strip waveguides.

II. EXPERIMENT
A. Waveguide Fabrication

The waveguides used in the experiments were fabricated on
z-cut, y-propagating LiNbO; crystals having an acoustic grade
polish. Waveguide patterns were produced using standard
photolithographic techniques. On one crystal, a set of 720 A
thick Ti strips ranging in width from 14 to 10 ym in 4 um
steps was evaporated. The metal was in-diffused for 6 h at
1100°C. On three other crystals, 6 um wide Ti strips were pre-
pared with thicknesses of 740, 850, and 1110 A. The diffu-
sion condition for these crystals was 1050°C for 6 h. In all
cases, the diffusion was carried out in an H,O rich atmosphere
to prevent surface guiding due to Li out-diffusion. The ends
of the waveguides were blocked and optically polished to
achieve flat end surfaces.

B. Mode Profile Measurements

Waveguide mode sizes (full width at half maximum power
intensity I') in the directions parallel to and perpendicular to
the crystal surface were measured for both TE and TM polar-
izations at the 1.32 um wavelength using an Nd-YAG laser.

One-dimensional cuts of the 2D-mode profile, which inter-
sect the peak power point, were obtained using a technique
similar to that used by Chen and Wang [4] to study mode con-
finement in semiconductor lasers. The near-field pattern was
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