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3 x 2 Channel Waveguide Gyroscope Couplers: Theory

WILLIAM K. BURNS, MEMBER, IEEE, AND A. FENNER MILTON

Abstract-Gyroscope couplers with three input ports and two output
ports which can be implemented in a planar geometry are studied theo-

retically. Using a local normal mode description in the approximation

of coupled mode theory, analytic output power expressions are ob-

tained for the 3 X 2 branching waveguide coupler and the 3 X 2 direc-
tional wavegnide coupler. When optimized, these devices behave identi-
cally to each other and to the three-dimensional 3 X 3 coupler [ 1] from
which they are derived.

I. INTRODUCTION

T HE use of a 3 X 3 coupler in a fiber optical gyroscope, as

demonstrated by Sheem [1], provides a passive approach

to the operation of a fiber gyroscope at maximum sensitivity

for low rotation rates. The appeal of this device has led to the

investigation of approaches by which it could be implemented

in a planar geometry [2] so that precision circuits could be

fabricated with the techniques of integrated optics. Two such

planar implementations have been suggested: a 3 X 2 branch-

ing waveguide coupler [Fig. 1(a)], presented here, and a 3 X 2

directional coupler approach [Fig. l(b)], also suggested by

Sheem [3]. Both these devices recognize the requirement of

symmetry about a center line in the direction of propagation

and the requirement of an input guide separate from the two

output guides. They differ from the 3 X 3 coupler, whether

three dimensional [1] or planar [2], [3], in that they utilize

only two output guides to the fiber loop. The third guide is

terminated in the body of the coupler. They differ in pre-

cisely how this is accomplished in that the branching coupler

only has one interference region while the directional coupler

uses two. Both devices utilize a single-mode (3 single-mode

arms) three-arm branching or separating waveguide which, to

date, has not been theoretically analyzed. A multimode three-

arm branch has been reported in [4].

Our purpose in this paper is to provide an approach to the

understanding of the three-arm branch and to apply that under-

standing to the analysis of the 3 X 2 branching coupler and the

3 X 2 directional coupler. Our branch analysis makes use of

the coupler symmetry, mentioned above, to reduce the three-

arrn branch to an equivalent two-arm branch, which is well

understood and can be quantitatively described in the abrupt,

power-dividing limit [5] , [6] . Our analytical approach is to

utilize the approximation of coupled mode theory to develop

the local normal modes for a set of three coupled waveguides.

With the local normal mode description, we can describe both

power\ transfer between local normal modes in the branches

and interference between local normal modes in the interfer-

ence sections. This allows us to write analytic output power

expressions for each 3 X 2 coupler. We find, in fact, that when
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Fig. 1. (a) is a (3 X 2) branching waveguide coupler and (b) is a (3 X 2)
directional waveguide coupler [3]. Each device is symmetrical about
its center line.

optimized, the two couplers operate identically. We note that

Sheem has described the 3 X 2 directional coupler by consider-

ing the modes of each individual guiding region and also using

coupled mode theory [3]. Although our local normal mode

approach gives a theoretically equivalent result, we feel it adds

a useful physical picture of the operation of the device. Our

analysis of the three-arm branching waveguide will have general

utility to the understanding and design of these structures.

The application of this result to the 3 X 2 gyroscope couplers

provides simple analytic expressions describing output power

in terms of fundamental design parameters and will aid in the

future design of this class of 3 X 2 couplers.

II. OPERATION OF THE THREE-ARM BRANCH

In order to treat a three-arm branch we will first develop

representations for the local normal modes of the three cou-

pled waveguides of Fig. 2. We assume the outer guides to be

identical and equidistant from the cent er guide. K1 ~(=K23) is

the nearest neighbor coupling coefficient and K1 ~ is the cou-

pling coefficient between the two outer guides. Coupled mode

equations describing this system are [71

dal
—+ifllal +ilK121a2 +ilK13\a3 = O
dz

(la)

daz
—+ i~zaz +ilK121a1 +i[K121a3 = O
dz

(lb)

da3
—+i~3a3 +il K13\a1 +ilK121a2 = O
dz

(It)

where al is the coupled mode amplitude (not local normal

mode) and ~1 is the mode propagation constant for guide 1,
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Fig. 2. Three coupled channel waveguides. Guides 1 and 3 are identical
and equidistant from guide 2.

etc. When fl~ = @l, the propagation equations for this three-

guide system can be reduced to the equations of the usual two:

guide system by the substitution [7]

a(z) = a2 (z) (2a)

-J- [a, (z) + a,(z)]
b(z) = G

(2b)

to obtain

$+i&a+ilKlb=O (3a)

~+i/3bb+ilKla=0 (3b)

where

6.= 02 (4a)

Pb ‘PI + K131 (4b)

lKl=~lK121. (4C)

One local normal mode of our three coupled waveguides is

obtained from the particular solution [7] a(z) = b(z) = O.

Substitution into (1) yields the antisymmetric local normal

mode, which we denote by the subscript j.

()

I/fi

Aj(z) = o
- i/3j z

exp (5a)

-l/@

where

4=( L- IK131. (5b)

The column vector in (5a) represents

()

al(0)

az (0)

a3(0)

and has been normalized to unity power.

The two local normal modes for the reduced two-guide sys-

tem are obtained from the standard normal mode transforma-

tion [8], [9] of (3). The result for the local normal mode

amplitudes ai and ak is

()da’i(Z) =
-i~iZ

exp
e

()

-e - i~kZ

ak(’) = exp
d

where the column vector represents

()

a(0)

b(0) “

(6a)

(6b)

The normal mode propagation constants are

fii = r+ ]Kl (.X2 + 1)1/z (7a)

Pk ‘~ - IKI (X2 + 1)1/2 (’7b)

where

~=;(~a+~b) (8a)

(8b)

sothatd2 +e2 =1.

By transforming the column vectors in (6) from the reduced

two-guide system to the original three-guide system, we obtain

the symmetric local normal modes of the three-guide system.

We employ (2) at z = O and maintain the constraint of unity

power to obtain from (6)

()

e/fi

,ft~(Z) = d
-ifiiZ

exp (lOa)

e/@

‘()

dlfi

Ak(z)= ‘e
‘i&Z

exp . (I[)b)

di~

These local normal modes have the property al(0) = a3 (0) as

we would expect from the symmetry of the system.

Power distribution between the center and outer guides in

the local normrd modes i and k depends on the parameter X

[6] , [9] which from (4) and (8) can be written as

x=~-lK131

2~lK12\
(11)

where A/3 = @2- ~1 is the difference in propagation constants

for the three coupled guides. For example if X = O, then d =

e = 1/~. At large guide separation, X ~ O if ~ = O. How-

ever, if ~ >0 then X-+ ~, and d = 1, e = O. These local rmr-

mal mode distributions are shown in Fig. 3. This behavio K is

the analog of the behavior of the two-arm branch for synch ro-

nous (Afi = O) or nonsynchronous (A/3 # O) operation [5], [6].

The difference here is that at small guide separation, A~ lbe-

comes a function of guide separation through the coupling

coefficient K13.

The utility of the reduced two-guide solution is that we can

apply many of the results of the two-arm branch to the three-

arm branch. In particular, power transfer between local nomlal

modes at an abrupt transition (case of power division) can be

expressed as [9]

l~k~12or l~i~12_ (fo - fl)2

lAio12 lArco12 (fo - fl)’ +(1 +flfo)2
(12)
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Shaoe of the svmmetric local normal modes i and k for large
mide semration such that the wave.wridesare uncoupled. (a) Thr~e
~dentical”waveguides. (b) Outer w&eguides different from center
waveguide.

for mode i or k, respectively, incident on the transition, where

f=; =-x+(x’ + 1)1/’ (13)

and o, 1 refer to opposite sides of the transition. We also note

that because of the symmetry of our structure, overlap inte-

grals between the antisymmetric mode j and the symmetric

modes i and k are always zero. Thus, there is never any power

transfer at a transition between j and i or k.
For A~ >0 we typically have a transition between X. at

small or zero guide separation and X = co at large guide separa-

tion. For input ini,(12) for this case reduces to [6]

lAkl 12

[
—=+ 1-

X.

lAio12 (x: + 1)’/’
1

(14)

which is identical to e2 evaluated at XO (9 b).

As has been discussed in [6], (12) and (14) are derived using

coupled mode theory and are accurate in the regime where

coupled mode theory is a good approximation. This circum-

stance occurs when branch arms are well separated (weak

coupling) or, in (14), when the reduced two-arm branch is

synchronous (smill XO).

III. OPERATION OF THE GYROSCOPE COUPLERS

We will use the local normal mode formalism developed in

Section II for three coupled waveguides to analyze the two

types of 3 X 2 gyroscope couplers shown in Fig. 1. For each

coupler we envision source input to the center guide on the

left of the coupler, the gyroscope fiber loop attached to the

two guides on the right, and output signals from the outer

guides on the left. Examination of gyroscope output equations

[10] indicates that the device will be at the maximum sensi-

tivity or quadrature point when the output signals from the

two outer arms are equal for zero rotation. From the normal

mode considerations of Section II we can see that, for these

couplers, this condition is guaranteed by the requirement for

symmetry about the coupler center line. We have a symmetri-

cal excitation or input which will only excite the symmetrical

local normal modes i and k. Because of the coupler symmetry,

these modes always have equal amplitude in the outside guides.

In the absence of rotation there is no coupling to the antisym-

metric mode j. Therefore, the output signals must be identical

at rest, independent of the mode coupling in the branches and

of the lengths of the interference sections. The magnitude of

the gyroscope sensitivity at the maximum point, however, will

depend on the design of the branches and interference sec-

tions, as will be demonstrated below.

We will consider the branching [Fig. 1(a)] or separating (b)

waveguide behavior in the abrupt or power dividing limit

because it will allow us to superpose modes in a branch while

maintaining their relative phase (thereby avoiding a compli-

cated calculation) and because it will allow us to use the ana-

lytic expression for power transfer in (14). We are interested

in a system of three coupled guides that are not too different

in thickness or refractive index profile, so we have a choice of

assuming guides with identical propagation constants ( A(3 = O)

or assuming a slight difference in propagation constant be-

tween the center and the outer guides (Ad # O). We choose

the latter case (~ # O) since it represents greater generality,

and in fact, turns out to be necessary to optimize the gyro-

scopic sensitivityy of the branching couplers. This represents a

significant difference between our analysis and that given in

[3] for the 3 X 2 directional coupler.

A. 3 X 2 Branching Coupler

In Fig. 4 we assume D1 = D3 ZD2 and Db = D5, where Di

is the width of channel i. Each channel is single mode so that

the central channel of width 2DA supports two normal modes,

and the channel at position B of width 2D1 + Dz supports

three normal modes. Between B and C the channel width nar-

rows from a three-mode guide to a two-mode guide.

For A~ >0 the local normal modes at large separation (posi-

tion A) are shown in Fig. 3(b). Input of unity power into

guide 2 will excite only local normal mode i, which will travel

in the branch and, from (14), convert e’ of power to mode k

by the time it reaches position B [Fig. 4(a)] . The total mode

amplitude at B, Y(B) is given by the following:

V(B) = ~~ ~i - e~k (15)

where e is evaluated at B and IVt and Vk represent the trans-

verse field distribution of the symmetric local normal mode

amplitudes at B (normalized). In (15) we have inserted the

proper phase (rr) between Vi and Wk which is apparent from

the assumption of power division and the definitions of (10).
We assume adiabatic (no power transfer between local normal

modes) guide narrowing between B and C so that mode k cuts

off with power loss ez and mode i evolves without power loss

to the mode i of the two-mode guide at C. Mode i then prop-

agates to position D where we assume a symmetric (P4 = ~5),

power dividing two-arm branch leading to each end of the gyro

fiber loop. After branch arm separation, mode (not local

normal mode) amplitudes in each guiding region are aQ = as =
U(l -e’ )/2. With a total Sagnac phase shift of 2@imposed by

the rotating loop, the returns at position E are [Fig. 4(b)]

(:)=i--t?) (16)
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Fig. 4. (a) Input and (b) output mode distributions for the (3 X 2)
branching waveguide coupler.

which enter the branch to form a mixture of the symmetric

(i2) and antisymmetric (?2) modes, rr/2 degrees out of phase,

of the two-mode structure at D.

W (D)= <K?_ (COS@’JZj~+ i sin @’4Zj.2). (17)

Here, Wi2 and Vjz represent the transverse field dependence

(normalized) of the local normal modes of the two-mode guide.

Theie modes interfere as they propagate to position C

W(C) = ~ (COS@Uj2 exp
-iflj2L- i6i2 L y i sin ~Tj2 exP

)

(18)

where 0i2 and 13i2 are the propagation constants of the local

normal modes between C and D, and L is the length of the

interference section between C and D. As these modes propa-

gate out the branch to position A, mode i will again transfer

ez of power t o k, while mode j remains uncoupled. The out-

put local normal modes at A are

()
o

‘1’i= G COS@ 1 exp-iPi2L

o

(19a)

where e is to be evaluated at B. The output power in each

guide is obtained by superposition of the local normal modes

of(19).

P: =~(1 -e’)[1 -(1 -e2)cos2@* ecosctsin2@] (20a)

P2 =(1 - e2)2 COS2@ (20b)

where in (20a) the plus sign is taken for PI and the minus for
p3, and ~ = (~iz - fiiz )L - T12. We define the sensitivity ~,

assuming unity input power, as

~ . dP1

d2$ fp.~
=~(1-e2)ecosa

and obtain the maximum sensitivity

1781

(21)

for the parameter values

e2(B)=~ and a=O. The 3 X 2 branching ;oupler is come-

nient to analyze in that, with the assumption of an abrupt

three-arm branch, all the phase shift between the local normrd

modes occurs in the interference section of length L. From

(21) we see that sensitivity is maximized by a rr/2 phase shift

in this section, equivalent to the 3 dB coupling required in a

2 X 2 gyroscope coupler. Optimization of the branch design is

achieved by maximizing the interference term between local

normal modes j and k, ~j~$ + ~~~k, in the output guide

1 or 3. Mode i plays no role since it has no amplitude in an

output guide. The value of X at B required to accomplish this,

e2(B) = ~, is obtained from (14) as

X(B) E
~ - IK13(B)I 1.—
2@ IK,2(B)I 2@

(22)

which in turn requires ~ = IK1 z(B) I + IK13 (B) 1. Power 10SS
upon input in the coupler is then ~, independent of 0. With

this optimization the output powers become

P1=*(2- cos2@*@_sin2@) (23a)
3

P2 = ; (1 + Cos 2@). (21b)

This result is identical with the corresponding equations (after

an equivalent maximization) for the (3 X 3) gyroscope coupler

[1], [1 1]. The maximized coupler sensitivity in both cases is

S = (3~)-1. Equation (23) is plotted in Fig. 5.

Since detailed knowledge of channel dispersion and coupling

coefficients is hard to obtain, it is of interest to estimate the

coupler sensitivity for the simplest experimental case of eclual

branch arm widths A@~ O. We can treat this case with the

model developed above by assuming A/3 positive, but small

compared to IK13 (B) 1. Then at large arm separation X-+ ~

and at B we have

X(B) ~
-IK,3(B)I

2filK,2(B) I .

The coupling coefficients between arms of the branch can be

written as [6]

]Klz I =F12 exp-y12x (25a)

IK13 I =F13 exp-y13(2x+~2) (2!jb)

where x is a variable separation between arms of the branch,

D2 is the thickness of the center guide, -yIz and T13 are trms-

verse momentum components in the cladding region between

the channel waveguides, and F12 and F13 are constants. For

our case of very small A~ we have F12 ~ F13 and 712 ~ 713 ‘z ~,

and asx -+ O, (24) for X(B) becomes

-yD2

X(B) C=-“p
2@ “

(26)

For modes near cutoff, we expect the field extent to be large

and 7 ~ O so that X(B) ~ -1 /2fl For modes far from cut-

off, the fields will be well confined so that 7D2 is large and
X(B) -+ O. We thus expect values of X(B) limited by -1 /2~1 <

X(B) <O, depending on waveguide dispersion, for the case of
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Fig. 5. Channel waveguide output power versus Sagnac phase shift as
described by (23). Both the couplers described in this paper are de-
scribed by this relationship when optimized.

small A~. Corresponding values of e2 and S are ?j < e2 <$ and

0.136< S <0.177, compared to the optimum sensitivity of

S = 0.192. Designing the branch with equal arms is then likely

to reduce sensitivity between 10 and 30 percent from the

optimum value.

B. 3 X 2 Directional Coupler

The 3 X 2 directional coupler of Fig. 6 was suggested by

Sheem, who has analyzed it using conventional coupled mode

theory which does not use local normal modes [3]. The cou-

pler employs a three-arm separating waveguide and a three-

guide interference section (L ~) in place of the branch of the

3 X 2 branching coupler. The two-mode mixing section (L2 )

is a directional coupler with nonzero gap. In effect, this de-

vice is the directional coupler analog of the 3 X 2 branching

coupler. We will analyze the directional coupler under the

same assumptions used previously, i.e., AB >0 and a symmetri-

cal (power dividing) two-arm branch before -the fiber loop.

As before, we input unity power in guide 2 (normal mode i)

from the left. In this separating waveguide where the local

norrmd modes are well described by the coupled mode theory

developed in Section II on both sides of the branch, power

division simply implies that the power distribution at A is re-

produced at B. This statement is identical to the assumption

of (14), i.e., power transfer of e2 from i to k in the branch.

This equivalence is seen by inspecting the analog of(15) for

this case

since d =(1 - e2)l/2 and we take z = O at B. e and d in (27)

are evaluated at B. These modes (i and k) interfere between

B and C and at C the power in guide 2 is lost. The power in

each guide at C is

P4(C) =(1 - e2)e2 [1 - cos(/3i3 -/3k3)Ll] (28a)

Pz(C) = (1 - e2)2 +e4 + 2(1 - e2)e2 COS (~i~ - &3)LI.

(28b)

1A F

Fig. 6, Detail of the (3 X 2) dmectional coupler.

We assume the transition between C and D to act as an abrupt

(power dividing) transition so that the power in guides 1 and 3

at C is transferred without change to D. This excites normal

mode i in the two-guide section between D and E. At D we

have

()1Wt(D)= ~ ~ (29)

where PI(C) is defined in (28a) and the column vector stands

for (~~). The device now behaves identically to the branching

coupler discussed in the previous section in that Wi travels to

E and divides in the separating branch between E and F.

After traversing the fiber loop the returning Sagnac phase

shifted inputs combine in the branch as before to form the

normal modes i and j at ,5’, n/2 out of phase. These modes

propagate to D yielding

[ ()1W(D) = ~ COS@ -0i2L2
exp

1

‘isin@(-3exp-ip’2L2(30)

where ~i2 and /3jz denote the normal mode propagation con-

stants in the two-mode section and L2 is the interference length

between D and E. In the abrupt transition between C and D,

mode i converts sufficient power to mode k such that at C

there is no power in guide 2. We have, then, at C

,Ymm(C) = <~ cos @exp:ioi2L2*

“K3exp-i’
(31 a)

()
1

Wj(C) = i~P~ sin@ O exp-iPi2L2 exp-i613 Z

-1

(3 lb)

where ~symm is the sum of i and k, and we assume z = O at C.
These modes then propagate to B where z = L ~, and then out

the branch to A where power division insures that the power

distribution at A is identical to that at B. The output power in

each guide at A is
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PI =PI(C) [1 - 2PI(C) COS2@* sin 2@
3

. {(1 - e’) cos [(~~3 - 13~3)L1 + ~1

+ e2 cos [(Pj3 - /3j3)LI + ~1 }1 (32a)

P2 = 4P2 (c) COS2qJ (32b)

where PI(C) is given by (28a), a = ($2 - 0i2 )Lz - n/2, and e is

evaluated at B or C.

Again we wish to maximize the sensitivity S’ = dPi/d2@ I~.0

which is the coefficient of sin 2@in (32a). Using (4), (5), (7)-

(9) we can write the sensitivity, without approximation, as

‘=+%) sin’ [filK12 I(X2 + 1)1/2 Ll]

“{
Cos (8LI + cl) Cos [@[K1’ I(X2 + 1)1/2 LI]

x—
(X* + 1)’/’ sin (8L1 + a) sin [WIK1ZI(X2 + 1)1/2 L1]

}

(33)

where 6 = -1/2(~ + 3 IK13 1) and X is evaluated at B. This

coupler is more complicated than the branching coupler con-

sidered previously because the local normal modes experience

a relative phase shift in the section L.1 as well as in L2. Thus,

we might expect the optimum phase shift in the two-mode

section L’ would not be rr/2 in this case. An inspection of

(30) indicates that we can, however, obtain the same sensi-

tivity and output equations for the 3 X 2 directional coupler

as we obtained for the branching coupler by choosing parame-

ter values as follows. 1) We choose A13= IK13 (B)I so that

X(B) = O and 6 =_- 21KIS (B)l. 2) Then choose L 1 such that

sin’ (filKlz IL J cos (w@lK121L J is maximized (IKIZIL 1 =
38.70). 3) Finally, choose Lz such that tiLl + a - -21 K13(B)I “

L 1 + (pjz - %2)L’ - rT/2 = O. Then we again have S’ = (3@_)- 1
and (29) reduces identically to (23) as obtained for the opti-

mized 3 X 2 branching coupler. The optimized parameter

values are, however, different for the two cases in that the

asymmetry A13 required is smaller for the directional coupler

and the length Lz becomes a function of L 1. Indeed, an ex-

perimental choice of equal branch arm widths (~ H O) will

result in an even smaller reduction in sensitivity than was the

case for the branching coupler. For example, for ~ ~ O, a

choice of L1 in(33) such that IKIZ I(X2 + 1)1/2 L 1 = 38.7° and

L2 such that 6LI +cx~-~lKlslLI +(/3j2 - (3i2)L2 - ~/2=o

leads to

[
~= J- 1-

1

3@ (1+ 8 exp2T(x ‘D’)) 1 (34)

which, following the argument of Section III-A will be within

10 percent of the optimum sensitivity.

IV. CONCLUSIONS

We see that, when optimized, both waveguide couplers be-

have identically to the original three-dimensional 3 X 3 coupler

described in [1]. This optimum behavior is characterized by

the output (23) and by a sensitivity of (3 ~)-1. An examina-

tion of the optimized coupler shows that to obtain the maxi-

mum gyroscope sensitivity all these six port couplers (the radi-

ation mode serves as a virtual sixth port in the planar devices)

must be adjusted to obtain the same propagation result: 1) the

signals from the two output arms are equal for zero Sagnac

phase shift, 2) a one-third power loss occurs between input
port (2) and the two fiber ports, and 3) for input from a single

fiber port, an equal division of power occurs between the two

output ports (1) and (3). The first condition is satisfied by

symmetry around the center line. In the case of the 3 :)( 2

branching structure the power loss is adjusted by varying the

thickness of guide 2 relative to that of guide 1 and 3, thereby

changing /32 - PI. The third requirement can then be met

by varying L. In the case of the 3 X 2 directional coupler

the power loss can be optimized by varying L ~ (in this case

all input guides can be nearly identical) and then the third

requirement met by varying Lz. In practice, the planar struc-

tures may not behave exactly as analyzed here, but near op-

timum performance should be obtained as long as two indep-

endent adjustments are possible to meet the requirements

described above.

To make these adjustments correctly in a completely passive

system would require detailed knowledge of mode dispersion

and coupling coefficients in the material system chosen. In an

active waveguide system such as Ti: LiNb03, electrooptic con-

trol could be used to adjust the coupling lengths and even vary

the asynchronism (B2 - /3J in the branch, although this is more

difficult. Thus, a 3 X 2 directional coupler, with two indepen-

dent electrooptical adjustments, may be easier to fabriC3de.

However, a 3 X 2 branching coupler with a single electrooptical

adjustment of the interference length, and equal thickness

branch arms, will still operate within 30 percent of the opti-

mum sensitivityy.

In the process of treating the 3 X 2 gyroscope couplers, we

have developed a local normal mode description for three cou-

pled waveguides which are symmetrical about their center lime,

and shown, in the coupled mode approximation, how the

propagation equations can be reduced to those for two guides.

This result can be applied to three-arm branching or separating

waveguides with symmetry about a center line, allowing the

description of power transfer at a transition.
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Mode Size and Method for Estimating the Propagation
Constant of Single-Mode Ti: LiNb03 Strip Waveguides

STEVEN K. KOROTKY, WILLIAM J. MINFORD, LAWRENCE L. BUHL, MANUEL D. DIVINO,

AND ROD C. ALFERNESS

Abstract–We have formulated a model to calculate the mode size and

propagation constant of single-mode titanium-lithium niobate diffused

strip waveguides directly from controllable fabrication parameters and
basic constants. The model is compared to measurements of the lateraJ

and verticaf mode width of Ti:LNbOs wavegnides for a variety of dif-

fusion conditions. We show that the model accurately predicts the

geometrical mean mode size of the two-dimensionaf waveguide, The
model provides a simplified method for estimating the mode size and
propagation constant of the guide, and is useful in designing waveguide

devices having low fiber/waveguide coupling and bending losses.

I. INTRODUCTION

o PTICAL waveguides produced by the in-diffusion of

titanium into lithium niobate crystals have been used to

fabricate many electrooptic and acoustooptic devices which

are potentially useful for communication and sensing applica-

tion [1]. The successful construction of some of these de-

vices, directional coupler wavelengths filters [2], for example,

depends critically on engineering the propagation constants of

the waveguides. For other applications, such as coupling to a

fiber [3], it is also necessary to control the size of the wave-

guide mode. For the most part, research devices based on
Ti: LiNb03 waveguides are developed through trial and error

iteration. As devices continue to become increasingly more

complex, the need for simple physical models for estimating

and relating the mode paramete~s of Ti: LiNb03 single-mode

strip waveguides becomes more acute.

In this paper, we present measured mode sizes for Ti:LiNb03

waveguides as a function of several diffusion parameters. We
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also describe a model, based on the variational principle for

the propagation constant, which predicts the characteristics of

single-mode diffused strip waveguides in terms of controllable

diffusion parameters. The model accurately reproduces the

experimental geometrical mean mode size from fundamental

parameters, and also provides a simplified method for estimat-

ing the propagation constant of diffused strip waveguides.

II. EXPERIMENT

A. Waveguide Fabrication

The waveguides used in the experiments were fabricated on

z-cut, y-propagating LiNb03 crystals having an acoustic grade

polish. Waveguide patterns were produced using standard

photolithographic techniques. On one crystal, a set of 720 ~

thick Ti strips ranging in width from 1~ to 10 #m in ~ Km

steps was evaporated. The metal was in-diffused for 6 h at

1100”C. On three other crystals, 6 pm wide Ti strips were pre-

pared with thicknesses of 740, 850, and 1110 A. The diffu-

sion condition for these crystals was 1050”C for 6 h. In all

cases, the diffusion was carried out in an H20 rich atmosphere

to prevent surface guiding due to Li out-diffusion. The ends

of the waveguides were blocked and optically polished to

achieve flat end surfaces.

B. Mode Profile Measurements

Waveguide mode sizes (full width at half maximum power

intensity r) in the directions parallel to and perpendicular to

the crystal surface were measured for both TE and TM polar-

izations at the 1.32 #m wavelength using an Nd-YAG laser.

One-dimensional cuts of the 2D-rnode profile, which inter-

sect the peak power point, were obtained using a technique

similar to that used by Chen and Wang [4] to study mode con-

finement in semiconductor lasers. The near-field pattern was
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